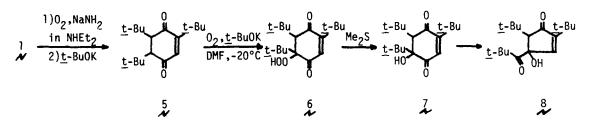

a-KETOHYDROPEROXIDES FROM 2,4,6-TRI-t-BUTYLPHENOL

A. Nishinaga, T. Itahara, T. Shimizu, and T. Matsuura Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan

(Received in Japan 11 May 1976; received in UK for publication 1 June 1976)


Although 6-hydroperoxy-2,4-cyclohexadienones have been considered to be intermediates in the reaction of dioxygenases which catalyze the oxidative cleavage of phenolic substances,¹ little has been reported on synthesis and reactions of such α -ketohydroperoxides derived from phenols.² We now wish to report the synthesis and some chemical behaviors of α -ketohydroperoxides derived from 2,4,6-tri-<u>t</u>-butylphenol (<u>1</u>) by base-catalyzed oxygenation. Spectral and analytical data of products are summarized in Table 1. The oxygen bubbling through a solution of <u>1</u> in a mixture of t-BuOH and petroleum ether (2:1) containing <u>t</u>-BuOK at 0°C for 2 hr and working up the reaction mixture (dilution with aqueous HCl, extraction with ether, and evaporation of the extract) gave 2,4,6-tri-<u>t</u>-butyl-6-hydroperoxy-2,4-cyclohexadienone (<u>2</u>) in 70% yield; mp 109-111°.

The hydroperoxide (2) liberated iodine from potassium iodide. The structure (2) was further confirmed by the facts that the treatment of 2 with CF_3COOH quantitatively gave 3,5-di-<u>t</u>-butyl-<u>o</u>-benzoquinone and the reduction of 2 with Me₂S afforded 3,5-di-<u>t</u>-butylcatechol formed by the de-<u>t</u>-butylation of the corresponding <u>o</u>-quinol, the primary reduced product. The treatments of 2 with <u>t</u>-BuOK gave epoxy-<u>o</u>-quinol (3)³ in 90% yield in <u>t</u>-BuOH at 60°C for 3 min and gave 3 and the starting phenol (1) in 60 and 40 % yields, respectively, in DMF at room temperature for 5 min. The mechanism of this conversion envisaging intramolecular asymmetric cleavage of dioxetane intermediate by interaction with π -system has been suggested.³ The NMR spectrum of a solution of 2 in CD₃OD containing CD₃ONa after being allowed to stand for 18 hr showed that 2 was partially converted to the isomeric hydroperoxide (4) where 2 : 4 = 1 : 1, suggesting an equilibrium between 2 and 4 being established under the conditions.⁴

Compound	IR(Nujol)(cm ⁻¹)		¹ Η-NMR(CDCl ₃), δ(ppm)				Elemental		Analyses
	он	<u>۲</u> 00	<u>t</u> -Bu	CH-CO	CH=CO	OH(00H)		C(%)	H(%)
2 N	3440	1650	0.92, 1.21, 1.24		6.13, 6.73	9.14	Calc. Found		10.27 10.55
6	3270	1660 1650	1.11, 1.22, 1.32	2.76	6.08	6.39	Calc. Found		9.74 10.04
2	3480	1690 1680	0.98, 1.27, 1.30	2.63	6.66	4.48	Calc. Found	73.43 73.60	10.27 10.54
8	3560	1730	1.07, 1.09, 1.29	2.49	6.77	3.41	Calc. Found		10.27 10.17

The similar base-catalyzed oxygenation of 2,5,6-tri-t-butyl-2-cyclohexene-1,4-dione (5), which was obtained by oxygenation of 1 in NHEt, with NaNH₂⁵ followed by base-catalyzed rearrangement,⁶ in DMF containing <u>t</u>-BuOK at -20°C for 6 hr quantitatively gave 2,5,6-tri-<u>t</u>-buty1-5-hydroperoxy-2-cyclohexene-1,4-dione (6); mp 192-194°. The structure was determined by comparison of the NMR data with that of 5 in which coupling between protons on C_3 and C_5 was seen.⁶ The

compound 6 was reduced with KI or Me_2S quantitatively to give 2,5,6-tri-t-buty1-5-hydroxy-2cyclohexene-1,4-dione (7); mp 43-44°, which was easily rearranged to ring contracted product (8); mp $171-172^\circ$ by treating it with silica gel in contrast with the behavior of the <u>o</u>-quinol from 2.

The authers are indebted to the Ministry of Education for financial support.

References and Notes

- 1. G. A. Hamilton, "Molecular Mechanism of Oxygen Activation", ed., O. Hayaishi, Academic Press, Inc., 1974, p⁻405.
- There is a report describing the formation of 2 but without any well-defined evidence: A. F. Bickel and H. R. Gersmann, <u>Proc. Chem. Soc.</u>, 231 (1957). 2.
- A. Nishinaga, T. Itahara, and T. Matsuura, <u>Tetrahedron Lett.</u>, 4481 (1974).
 Similar suggestions: H. R. Gersmann and A. F. Bickel, <u>J. Chem. Soc.</u>, 2711 (1959); E. Muller, A. Rieker, and A. Schick, <u>Ann.</u>, <u>673</u>, 40 (1964); A. Rieker and N. Zeller, <u>Tetrahedron Lett.</u>, 4969 (1968).
- A. Nishinaga, T. Itahara, and T. Matsuura, <u>Bull. Chem. Soc. Japan</u>, <u>48</u>, 1683 (1975).
 A. Nishinaga, T. Itahara, T. Matsuura, S. Berger, G. Henes, and A. Rieker, Chem. Ber., <u>109</u> (1976) in press.